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Abstract

A non-iterative pressure based algorithm which consists of splitting the solution of momentum energy and species equations into a sequence
of predictor–corrector stages was developed for the simulation of transient reacting radiating flows. A semi-discrete approach called the Method
of Lines (MOL) which enables implicit time-integration at all splitting stages was used for the solution of conservation equations. The solution
of elliptic pressure equation for the determination of the pressure field was performed by a multi-grid (MUDPACK package) solver. Radiation
calculations were carried out by coupling an existing radiation code to the algorithm. A first order Arrhenius type rate law expression was
utilized to account for the chemistry. The predictions of the algorithm were benchmarked against experimental and numerical data available in
the literature. Overall comparisons reveal that numerical results obtained with and without radiation mimic the experimental trends closely. As
expected, incorporation of radiation in the simulations leads to better agreement between the predicted and measured velocity and temperature
fields when compared to that obtained without radiation. The algorithm developed is an accurate and efficient tool for the simulation of reacting
radiating flows and its extension to turbulent flows with the improvement of the existing models is highly promising.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Numerical simulation of unsteady reacting flows such as
diffusion or premixed flames are characterized by the very dif-
ferent time and space scales controlling physical and chemical
processes. The physical and chemical processes can cover time
scales ranging over nine orders of magnitude and space scales
ranging over five orders of magnitude [1]. Moreover, incorpora-
tion of detailed reaction mechanisms and radiation models with
varying complexity in the simulation of these flows results in
a large number of equations to be solved in conjunction with
the other conservation equations and hence in excessive com-
putation times. Considering today’s limited computer resources
together with the difficulties listed above, a significant amount
of research effort has focused on the development of efficient
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algorithms which will enable the investigation of flame struc-
ture and dynamics.

In view of this, a novel CFD code based on Method of Lines
(MOL) was developed in Middle East Technical University
Chemical Engineering Department, for the unsteady simulation
of 2D incompressible, separated, internal, non-isothermal flows
in regular and complex geometries [2]. The code uses MOL,
which is an efficient semi-discrete approach for the solution of
time-dependent partial differential equations (PDEs), in con-
junction with (i) a higher-order spatial discretization scheme
which chooses biased-upwind or biased-downwind schemes in
a zone of dependence manner; (ii) a parabolic algorithm for the
computation of axial pressure gradient which does not require
the solution of an elliptic equation for pressure; (iii) an el-
liptic grid generator using body-fitted coordinate system for
application to complex geometries. The validity and the pre-
dictive ability of the code were tested by applying it to the
simulation of laminar/turbulent, isothermal/non-isothermal in-
compressible flows and comparing its predictions with either
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Nomenclature

Ĉp specific heat capacity
D diffusion coefficient
g gravitational acceleration
Ĥ enthalpy
I radiative intensity
j mass flux
N number of species
p pressure
q heat flux
r radial distance
t time
T temperature
u axial component of the velocity
v radial component of the velocity
v velocity vector
Y species mass fraction
z axial distance

Greek letters

λ thermal conductivity
μ viscosity
ρ density
ω̇ rate of reaction

Subscripts

A air
F fuel
k species
km mixture-averaged
ref reference

Superscripts

n present time level
∗ first-intermediate level
∗∗ second-intermediate level
t transpose
measured data or numerical simulations available in the liter-
ature [3,4]. In successive studies by the same group [5,6], the
code was further developed by incorporation of; the solution
of species equations using finite rate chemistry model together
with a Total Variation Diminishing (TVD) flux limiter based
discretization scheme for the computation of convective deriv-
atives [5]; a radiation submodel to account for radiative heat
transfer [6], for the simulation of transient reacting radiating
flows. The predictive performance of the code was tested by
applying it to the simulation of a confined laminar methane/air
diffusion flame and comparing its predictions with numerical
and experimental data available in the literature [7,8]. The ve-
locity, temperature and major species concentrations obtained
with and without radiation model were found to be in rea-
sonably good agreement with numerical results and measure-
ments [6].

Although providing a useful basis for the simulation of re-
acting flows, the code used in [5,6] is limited to incompressible
flows due to the parabolic pressure scheme [9] embedded in
the flow solver. The parabolic scheme only allows z-component
of momentum equation to be solved and r-component of ve-
locity is calculated by direct utilization of continuity equation
by dropping the time derivative of density, an approach which
can only be valid if the flow field is treated as incompressible.
Considering the vast density changes due to temperature and
concentration variations, more accurate representation of typi-
cal flows necessitates pressure based schemes which can handle
all flow regimes ranging from incompressible to compressible.

Pressure based schemes in which pressure is treated as the
main dependent variable and density is computed via an equa-
tion of state, have proved to be accurate and efficient in the
simulation of a wide range of flows involving chemical reaction
and density change [10]. Popular examples of pressure based
schemes are SIMPLE by Patankar and Spalding [11] and PISO
by Issa [12]. Both methods rely on the solution of an elliptic
equation for pressure (either in terms of a pressure correction
variable or the pressure itself) and they operate on staggered
grid topology. What differs PISO from SIMPLE is that, PISO
exploits the concept of operator splitting by extending it to the
solution of conservation equations and offers a solution consist-
ing of a series of implicit predictor and explicit corrector stages
(splitting phases), hence it is non-iterative in contrast to the iter-
ative SIMPLE scheme. The non-iterative nature of PISO makes
it suitable for unsteady simulations whereas SIMPLE is mostly
used in steady computations.

The present study focuses on the development of a PISO
based algorithm for the transient simulation of reacting ra-
diating flows and evaluating its predictive performance on
the methane/air diffusion flame problem previously studied
by [5–8]. Similar to PISO approach developed for reacting
flows [13], the new algorithm is based on a sequence of pre-
dictor and corrector stages for momentum, energy and species
equations. A pressure equation which replaces the role of equa-
tion of continuity is derived and solved at momentum cor-
rector stages for the determination of pressure field. The dif-
ferences between the proposed algorithm and PISO lie in the
time-integration method and the grid topology utilized. In the
present approach, the conservation equations are cast in their
semi-discrete form using finite difference approximations on
non-staggered grid topology which results in a system of ODEs.
The resulting ODEs are integrated in time using higher-order,
implicit algorithms embedded in the sophisticated ODE solvers.
By this way, the present algorithm not only offers implicit hence
stable time-integration at all splitting phases without extra com-
plexity in the formulation, but also the flexibility and modu-
larity to incorporate any desired package with ease. Moreover,
with the utilization of non-staggered grid topology, easier book-
keeping is maintained throughout the algorithm as opposed to
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staggered one and the feasibility of its application to complex
geometries is greatly enhanced.

This paper is organized as follows: First the governing con-
servation equations followed by the description of the scheme
are presented. The details regarding to the elements of the nu-
merical solution technique are described next. Finally, the vali-
dation case, the numerical results obtained and the accompany-
ing discussions are presented.

2. Governing equations

The governing conservation equations in vector notation for
reacting radiating flows can be expressed as follows:

• Continuity equation:

∂ρ

∂t
= −(∇ · ρv) (1)

• Momentum equation:

∂

∂t
(ρv) = −[∇ · ρvv] − ∇p − [∇ · τ ] + ρg (2)

• Energy equation:

∂

∂t
(ρT ) = −(∇ · ρvT ) + 1

Ĉp

∇ · (λ∇T )

− 1

Ĉp

N∑
k=1

jk · Ĉp,k∇T

− 1

Ĉp

N∑
k=1

Ĥkω̇k − 1

Ĉp

∇ · qR (3)

• Species equation:

∂

∂t
(ρYk) = −(∇ · ρvYk) − (∇ · jk) + ω̇k, k = 1, . . . ,N

(4)

The pressure and density are related by an equation of state
which may be represented by

ρ = pψ(p,T ) (5)

Stress tensor τ appearing in Eq. (2) is expressed using New-
tonian type constitutive law of the form:

τ = −μ
(∇v + (∇v)t) + 2

3
μ(∇ · v) (6)

∇ · qR is the radiative source term which can be computed by
the following formula

∇ · qR = κ

(
4σT 4 −

∑
m

∑
l

wm,lI
m,l

)
(7)

once the radiative intensities (I ) are calculated by the solution
of Radiative Transfer Equation (RTE).

Mass flux vector jk is related to species gradients by a Fick-
ian type expression of the form

jk = −ρDkm∇Yk (8)
The mixture-averaged diffusion formula does not have the prop-
erty that the sum of the diffusive fluxes is zero, i.e, the condi-
tion,
N∑

k=1

jk = 0 (9)

Therefore, a correction is necessary to ensure mass conserva-
tion. For this purpose, rather than solving the species equation
for the excess species, its mass fraction is computed simply by

YN = 1 −
N−1∑
k=1

Yk (10)

The diffusive flux of excess species is computed by the fol-
lowing formula to ensure the mass conservation constraint
(Eq. (9)):

jN = −
N−1∑
k=1

jk (11)

The rate of fuel consumption ω̇CH4 for the methane–air reaction
considered in the present study is expressed using a one-step
global mechanism given by Khalil et al. [14]:

ω̇CH4 = ρ2YCH4YO2A exp(−Ea/RT ) (12)

where A = 1010 m3/kg s and Ea/R = 1.84 × 104 K.

3. Methodology

In what follows, splitting procedure for reacting radiating
flows using semi-discrete formulation of the governing equa-
tions will be presented.

3.1. Semi-discrete approach

In this study, the governing equations are solved using the
numerical Method of Lines which a is semi-discrete technique
for the solution of time-dependent partial differential equations
(PDEs). The MOL consists of two stages. First, the depen-
dent variables are kept continuous in time and the PDEs are
discretized in space on a dimension by dimension basis us-
ing any readily available spatial discretization packages such as
finite-difference, finite-element or finite-volume based schemes
which leads to a set of ordinary differential equations (ODEs).
Next the ODEs are integrated in time using any readily available
explicit or implicit ODE solver which constitutes the second
step. In consideration of the MOL solution, the governing equa-
tions will be presented in their semi-discrete form for sections
to come. Integration of the semi-discrete equations using an im-
plicit ODE solver will be explained in Section 4.

3.2. Splitting procedure for reacting radiating flows

A three stage scheme in which there are one predictor and
two corrector stages for momentum, energy and species will be
presented (Fig. 1).

In the course of splitting; temperature, pressure and concen-
tration dependent physical properties are updated at the start
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Fig. 1. Overview of the splitting procedure for reacting radiating flows.

of every stage using CHEMKIN-III [17] and TRANSPORT
[18] packages; radiative source term to be used in the energy
equation is computed before each energy stage by the help of
radiation module.

Following the semi-discrete approach, the conservation
equations at each splitting phase can be shown as

d

dt
(ρφi) ≈ Residuali (13)

where in this case φi is one of the dependent variables v, T or
YK and Residuali is finite difference representation of the terms
on the right-hand side of the parent equations (Eqs. (2)–(4)).
According to this notion, the residual expressions for momen-
tum, energy and species equations are;

Residualm = FD
{−[∇ · ρvv] − ∇p − [∇ · τ ] + ρg

}
(14)

Residuale = FD

{
−(∇ · ρvT ) + 1

Ĉp

∇ · (λ∇T )

− 1

Ĉp

N∑
k=1

jk · Ĉp,k∇T

− 1

Ĉp

N∑
k=1

Ĥkω̇k − 1

Ĉp

∇ · qR

}
(15)

Residuals,k = FD
{−(∇ · ρvYk) − (∇ · jk) + ω̇k

}
k = 1, . . . ,N (16)

where the subscripts m, e and s denote that the residual expres-
sion belongs to the momentum, energy and species equations,
respectively and FD{} is a symbolic operator which simply rep-
resents the finite difference expressions in a compact form. Let
the superscript n denote present time level and *, **, *** de-
note the intermediate values between the n and n+ 1 levels, the
splitting procedure is demonstrated below.
3.2.1. Predictor stage
In order to account for the rapid variations in temperature

and concentration over a time-step due to combustion, the se-
quence of solution commences with the energy equation then
followed by species and momentum equations as suggested
by [13]. The equations to be solved for this stage are:

(i) Energy predictor:

d

dt
(ρT ) ≈ Residualne (17)

(ii) Species predictor:

d

dt
(ρYk) ≈ Residualns,k, k = 1, . . . ,N (18)

(iii) Momentum predictor:

d

dt
(ρv) ≈ Residualnm (19)

The solution of Eqs. (17)–(19) yields the first intermediate
fields T ∗, Y ∗

k and v∗. It should be noted that velocity field ob-
tained as a result of the predictor stage does not necessarily
satisfy equation of continuity since it has been obtained using a
guessed (initial) pressure field.

3.2.2. First corrector stage
(i) Momentum corrector: A new velocity field v∗∗ together

with its corresponding pressure field p∗ are now sought
which will satisfy the discrete form of the equation of con-
tinuity for this stage

ρ∗ − ρn


t
≈ −(∇ · ρ∗v∗∗) (20)

For this purpose, a pressure equation is derived by taking
the divergence of momentum equation (Eq. (2)) as follows:

∇ · ∇p∗ = Residual∗p (21)

where

Residual∗p = − ∂

∂t
(∇ · ρv) − ∇ · [∇ · ρnv∗v∗]

− ∇ · [∇ · τ ∗] + ∇ · ρng (22)

Using first order differences for the evaluation of time
derivative of ∇ · ρv, one obtains

Residual∗p = − 1


t

[
(∇ · ρ∗v∗∗) − (∇ · ρnv∗)

]
− ∇ · [∇ · ρnv∗v∗] − ∇ · [∇ · τ ∗] + ∇ · ρng

(23)

The (∇ · ρ∗v∗∗) term in Eq. (23) can be eliminated in favor
of p∗ by joint utilization of Eq. (20) and equation of state
for this stage having the form (see Section 4 for details)

ρ∗ = p∗ψ(p∗, T ∗) (24)

Once the corrected pressure field (p∗) is obtained by the
solution of Eq. (21), ρ∗ is computed by invoking Eq. (24).
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Having obtained p∗ and ρ∗, momentum equation for this
stage

d

dt
(ρv) ≈ Residual∗m (25)

is solved to yield the first corrected velocity field v∗∗.
(ii) Energy corrector: Energy equation for this stage is

d

dt
(ρT ) ≈ Residual∗e (26)

solution of which results in the second intermediate tem-
perature field T ∗∗.

(iii) Species corrector: Species equation at this stage is

d

dt
(ρYk) ≈ Residual∗s , k = 1, . . . ,N (27)

solution of which finalizes the first corrector stage yielding
the second intermediate species field Y ∗∗

k .

3.2.3. Second corrector stage
The second corrector stage is the same as first corrector stage

except for the fact that all Residual expressions are computed at
** level. At the end of second corrector stage, third intermedi-
ate fields T ∗∗∗, Y ∗∗∗

k and v∗∗∗ are obtained. This concludes the
algorithm for one time step as the governing equations are now
integrated from n to n + 1 time level.

4. Numerical solution technique

In what follows, the components of the numerical solution
technique will be explained in detail.

4.1. Computation of spatial derivatives using finite difference
formulation

As discussed previously, the first stage of the MOL solution
consists of discretization of the spatial derivatives which con-
verts the system of PDEs into an ODE initial value problem.
While evaluating the spatial derivatives, the convective terms
should be approximated in such a way that the resulting sys-
tem of ODEs is stable according to the linear stability theory
[15]. In view of this, Oymak and Selçuk [19] used a five-point
(fourth order) Lagrange interpolation polynomial based finite-
difference discretization scheme which in its compact form can
be written as follows

∂u

∂x
=

5∑
i=1

bi(x)ui (28)

where

bi(x) =

∑5
k=1
k �=i

∏5
j=1
j �=i
j �=k

x − xj

∏5
j=1
j �=i

xi − xj

(29)

Biased-upwind or biased-downwind stencils are chosen in a
zone of dependence manner for the computation of convective
terms and centered stencil is used for the diffusive terms which
can be obtained by substituting x = x2, x = x4 and x = x3 into
Eq. (29), respectively. This approach was successfully applied
to the MOL solution of diverse range of fluid flow problems
[3,4,20].

In an attempt to apply the same principles to the simulation
of chemically reacting flows, Tarhan [5] observed that spuri-
ous over- and under-shoots occur in the vicinity of the steep
velocity and temperature gradients. The remedy proposed was
the utilization of a second-order discretisation scheme based on
Lagrange interpolation polynomials along with a Total Varia-
tion Diminishing (TVD) flux limiter. A numerical scheme is
said to be TVD if the total variation does not increase in time.
That is:

TV(un+1) � TV(un) (30)

Here T V (un) is the total variation of the numerical solution at
the time level tn which is defined as

TV(un) =
∑

i

|ui+1 − ui | (31)

where ui stands for the approximate solutions at mesh nodes xi .
Introducing Van Leer flux limiter [21] of the form

Ψi = ri + |ri |
1 + |ri | (32)

to second-order Lagrange interpolation based discretization
scheme yields the following upwind and downwind expressions
which satisfy the TVD condition, respectively:

∂u

∂x

∣∣∣∣
i

= ui − ui−1

xi − xi−1
+ 1

xi − xi−2

[
Ψi(ui − ui−1)

− Ψi−1
xi − xi−1

xi−1 − xi−2
(ui−1 − ui−2)

]
(33)

∂u

∂x

∣∣∣∣
i

= ui − ui+1

xi − xi+1
+ 1

xi − xi+2

[
Ψi(ui − ui+1)

− Ψi+1
xi − xi+1

xi+1 − xi+2
(ui+1 − ui+2)

]
(34)

The limiter Ψi is function of ratios of consecutive variations
given by

ri = (ui+1 − ui)/(xi+1 − xi)

(ui − ui−1)/(xi − xi−1)
(35)

for upwind scheme and

ri = (ui−1 − ui)/(xi−1 − xi)

(ui − ui+1)/(xi − xi+1)
(36)

for downwind scheme, respectively.
In the present investigation, the diffusive and convective

terms are discretized on non-staggered uniform grids using the
schemes proposed by Oymak and Selçuk [19] and Tarhan [22],
respectively.

4.2. Time integration

The most important feature of the MOL approach is that
not only does it have the simplicity of the explicit methods but
also the superiority of the implicit ones as higher-order implicit
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time integration methods are employed in the solution of the
resulting system of ODEs. There exist many efficient and re-
liable stiff ODE solvers in the open literature. However, it is
very important to select a suitable solver considering the type
and dimension of the physical system, desired level of accuracy
and execution time. Based on the previous experience with a
MOL based CFD code for the simulation of chemically reacting
flows, implicit Adams–Moulton and BDF methods embedded
in the state-of-the-art ODE solver LSODES [23] will be em-
ployed for time integration.

LSODES solves stiff and non-stiff systems of the form
dy/dt = f . Non-stiff systems are handled by Adams methods
(predictor-corrector) whereas BDF (GEAR methods) are used
for the stiff cases. It determines the sparsity structure on its own
(or optionally accepts this information from the user) and then
uses parts of the Yale Sparse Matrix Package (YSMP) to solve
the linear systems that arise, by a sparse (direct) LU factor-
ization/backsolve method. LSODES supersedes, and improves
upon, the older and well known GEARS package.

4.3. Numerical solution of the pressure equation

It has been shown that the present algorithm necessitates
the solution of a elliptic pressure equation (also known as the
pressure Poisson equation) at each momentum corrector stage.
Utilization of classical iterative methods for the solution of
pressure Poisson equation in time-dependent computations is
computationally expensive and takes most of the computing ef-
fort. Direct or multigrid methods on the other hand are more
attractive for these type of calculations owing to their efficiency
and robustness [24]. Under the light of these facts, the present
algorithm was equipped with a hybrid multigrid/direct solver
namely MUDPACK [25]. MUDPACK is a collection of FOR-
TRAN subprograms for the solution of linear elliptic PDEs
which can operate on any bounded rectangular domain (not
restricted to Cartesian coordinates) with any combination of
boundary conditions. The second-order accurate results pro-
duced by the solver can be improved to fourth-order accuracy
with ease using the method of deffered corrections.

For the solution of pressure equation of the form:

∇ · ∇p∗ = Residual∗p (37)

where

Residual∗p ≈ − 1


t

[
(∇ · ρ∗v∗∗) − (∇ · ρnv∗)

]
− ∇ · [∇ · ρnv∗v∗] − ∇ · [∇ · τ∗] + ∇ · ρng

(38)

MUDPACK requires that the value of the Residual∗p term at
each grid point is specified. For this purpose equation of conti-
nuity (Eq. (20)) is invoked which yields the following expres-
sion:

Residual∗p ≈ − 1


t

[
(ρ∗ − ρn)


t
− (∇ · ρnv∗)

]

− ∇ · [∇ · ρnv∗v∗] − ∇ · [∇ · τ∗] + ∇ · ρng

(39)
Due to the time-advanced density term (ρ∗) present in the right-
hand side, Eq. (39) is implicit in time and hence cannot be
directly used for the calculation of Residual∗p term. The generic
procedure for eliminating the time-advanced density in favor
of time-advanced pressure (p∗) is by using equation of state
(Eq. (24)) which relates these two variables to one another.
However, this in overall, results in a variable coefficient Poisson
equation for pressure, solution of which is subject to stability
problems [26]. Instead, a different approach is adopted in the
present study: Considering the fact that the density variation in
low Mach number flows is mostly due to temperature and con-
centration rather than pressure [13] and the former two remain
unchanged during a momentum corrector stage, the first term in
brackets in Eq. (39) is dropped yielding:

Residual∗p ≈ 1


t
(∇ · ρnv∗) − ∇ · [∇ · ρnv∗v∗]

− ∇ · [∇ · τ ∗] + ∇ · ρng (40)

In an attempt to verify the validity of the approach adopted,
magnitudes of the first and second terms of Eq. (39) was com-
pared. The analysis revealed that the former is three orders of
magnitude smaller than the latter which fortifies the utilization
of Eq. (40) for the computation of Residual∗p term.

Specification of boundary conditions is flexible in
MUDPACK; use of any combination of periodic, Dirichlet and
mixed-derivative boundary conditions is possible. In the present
study, Dirichlet type boundary condition (p = pref) was em-
ployed for outflow and derivative boundary conditions obtained
from momentum equations of the form:

∇p = −[∇ · ρvv] − [∇ · τ ] + ρg (41)

were utilized for inflow, centerline and wall. The package
and detailed documentation on the solvers can be obtained
from [27].

4.4. Computation of radiative source term

For the computation of radiative source term, use has been
made of a radiation code based on MOL solution of Discrete
Ordinates Method (DOM) which was previously developed and
applied to the simulation of steady-state radiative transfer in 2D
axisymmetric, absorbing, emitting gray media [16], by means
of coupling it to the CFD code.

The coupling strategy is mainly based on regular transfer
of temperatures and concentrations solved by the CFD code
to the radiation code which in turn provides source term field
as the solution propagates in time. Owing to the nature of ra-
diation transport, radiative heat transfer computations can be
performed on much coarser grid resolutions when compared to
that required for CFD. Hence rather than using identical grid
resolutions for both CFD and radiation codes, two different res-
olutions were utilized: a fine mesh for CFD code and a coarse
one enabling economic computation of radiative source term.
Temperature and concentrations at the overlapping grid points
of the coarse and fine meshes are transferred to the radiation
code which calculates radiative source term for the CFD code.
Source terms on the coarse mesh are redistributed to fine CFD
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Fig. 2. Schematic diagram of confined axisymmetric laminar diffusion flame burner.
mesh via 2D interpolation. This cyclic loop is continued until
steady-state which is dictated by the CFD code. Details regard-
ing to the radiation code and coupling procedure can be found
elsewhere [6,20].

4.5. Final remarks

So far, a non-iterative pressure based scheme for the solution
of conservation equations of momentum, energy and species
together with the numerical solution technique was presented.
The formulations were given in vector notation for the sake of
generality but the algorithm is equally applicable to any coor-
dinate system. For the simulation of the problem under con-
sideration, the algorithm was implemented in two-dimensional
axisymmetric cylindrical coordinates. The singularities associ-
ated with the cylindrical coordinate system were surmounted
using L’Hopital’s rule where appropriate.

One other remark will be made on the selected grid topol-
ogy. Most of the time, staggered grids are employed in pressure
based schemes in order to avoid a phenomenon called odd-even
decoupling or checker-board effect which can be described as
the spurious pressure fluctuations occurring at the adjacent grid
nodes. Despite the non-staggered grids utilized in the formula-
tion, the possibility of a checker-board effect on the results was
surmounted by the inclusion of density variation in the con-
tinuity equation for compressible flows as suggested by [28]
together with the higher-order spatial discretization scheme em-
ployed in the computations.
Fig. 3. Conductive and radiative heat fluxes in r-direction at the tip of the flame.
——— : Conduction; −·−·− : Radiation.

5. Results

For the evaluation of the performance of the algorithm for
reacting radiating flows, use has been made of an atmospheric,
axisymmetric, laminar methane-air diffusion flame (Fig. 2) pre-
viously studied by [5,7,8,29]. As initial conditions, the burner
was assumed to be filled with stationary air at room tempera-
ture. The boundary conditions used in the solution of conser-
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Fig. 4. Radial and axial profiles of axial velocity and temperature at two axial locations and along centerline: (a) Axial velocity; (b) Temperature. Symbol: Experiment
[29]; - - - - : Predictions by Uygur et al. [6]; ——– : Present study (without radiation); − · − · − : Present study (with radiation).
vation equations were no-slip and no through-flow at the wall,
symmetry along the centerline and developed conditions at the
outflow, respectively. For radiative heat transfer calculations, all
boundaries were assumed to be black with emissivities equal to
unity. The flame was ignited by providing a local high tempera-
ture region (T = 1500 K) at the intersection of fuel and oxidizer
streams for a time period of 50 ms.

The grid resolution requirement was determined by execut-
ing the algorithm for two different sets of grid resolutions:
65 × 129 for CFD and 9 × 17 for radiation (set 1); 65 × 161 for
CFD and 9×21 for radiation (set 2); where in each pair the first
and second numbers correspond to the number of grid points in
r- and z-directions, respectively. It was seen that almost identi-
cal results were obtained with both sets and hence the coarser
set (set 1) was selected as the grid resolution to be employed in
CFD and radiation codes for CPU efficient simulations.

In order to determine the time step to be used for sta-
ble time-dependent calculations, executions with different time
steps for the above-mentioned grid resolutions were performed.
Upon testing, it was seen that stiffness brought by the chem-
ical reactions can only be overcome with 
t = 1 × 10−5 s
and further decreasing the time step (beyond 
t = 1 × 10−6 s)
over-amplifies the Residualp term in the pressure Poisson equa-
tion (Eq. (37)) hence leading to unstable solutions. Therefore,
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Fig. 5. Radial and axial profiles of CH4 and O2 mole fractions at two axial locations and along centerline: (a) CH4; (b) O2. Symbol: Experiment [29]; - - - - :
Predictions by Uygur et al. [6]; ——– : Present study (without radiation); − · − · − : Present study (with radiation).

t = 1×10−5 s was designated as the time step to be employed
in the calculations.

The computations were carried out on a Pentium IV 3.0 GHz
PC having 2 GB of RAM. Numerical experimentation with
two (one predictor, one corrector) and three stage (one pre-
dictor, two correctors) schemes revealed that the three stage
scheme does not bring any improvement in accuracy and
increases the computational effort significantly. Hence the
results presented in this paper are produced with the two-
stage scheme which took approximately 25 and 20 hours of
CPU time for simulations with and without radiation, respec-
tively.
The predictions of the algorithm were benchmarked against
both experimental measurements [8] and numerical solutions
[6] available on the test case. Figs. 4–6 illustrate the steady state
axial velocity, temperature and species profiles with and with-
out radiation. The reader should be informed at this stage that
since the objective of this study is to present a new algorithm
for the computation of reacting radiating flows, the discussions
that follow will be based on the predictive performance of the
algorithm with and without radiation rather than the flame char-
acteristics.

Velocity and temperature profiles at two axial locations and
along the centerline are displayed in Fig. 4. As can be seen,
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Fig. 6. Radial and axial profiles of H2O and CO2 mole fractions at two axial locations and along centerline: (a) H2O; (b) CO2. Symbol: Experiment [29]; - - - - :
Predictions by Uygur et al. [6]; ——– : Present study (without radiation); − · − · − : Present study (with radiation).
predictions with and without radiation agree well with the ex-
perimental data at the first axial location and no significant
discrepancy can be observed. However, the effect of incorpo-
ration of radiation is visualized better as downstream locations
are reached where temperature and velocity profiles follow the
experimental trends closer when compared to the predictions
without radiation. In particular, peak temperature prediction
displays favorable agreement with the experimental value. This
is attributed to radiative heat losses which tend to decrease tem-
peratures and in turn velocities.

The fuel and oxidizer profiles are shown in Fig. 5. As de-
picted by the figure, methane and oxygen profiles obtained
by simulations with and without radiation are in reasonable
agreement with the experimental measurements due to the sim-
plicity of the reaction mechanism employed in the compu-
tations. A similar behavior was also observed by Tarhan [5]
when the problem under consideration was simulated using
one-step reaction mechanism and it was reported that uti-
lization of multi-step reaction mechanism significantly im-
proves the results in terms of agreement with the measure-
ments.

Species profiles such as water-vapor and carbon-dioxide
which are important in terms of radiative heat transfer are il-
lustrated in Fig. 6. The figure shows that predictions with and
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without radiation mimic the experimental data almost exactly.
This finding places further confidence in radiative heat transfer
computations since the concentrations of H2O and CO2 plays
a crucial role in the calculation of absorption coefficients and
hence radiative source terms which are used in the energy equa-
tion.

The performance of the present algorithm relative to the
formerly developed code [6] was also assessed in terms of
CPU time requirement to obtain steady state results and pre-
dictive accuracy, on the test case under consideration. Com-
parisons reveal that not only the CPU time requirement of the
present code was approximately three times less than that re-
quired by [6] but a better accuracy was achieved as depicted by
Figs. 4–6.

In an attempt to demonstrate the relative significance of
radiative heat transfer with respect to transfer by conduc-
tion, radial profiles of radiative and conductive heat fluxes in
r-direction at the tip of the flame (z ≈ 7.4 cm) are plotted in
Fig. 3. As can be seen from the figure, inside the flame, con-
duction is the superior mode of heat transfer owing to high
temperature gradients occurring at this region whereas radiation
is approximately ten times the transfer by conduction outside
the flame. This behavior is consistent with the numerical results
of Zhang [30] on the problem under consideration.

6. Conclusions

In what preceded, a non-iterative pressure based algorithm
which consists of splitting the solution of momentum energy
and species equations into a sequence of predictor–corrector
stages was presented. The predictive performance of the al-
gorithm was demonstrated on a typical methane/air diffusion
flame. A global (one step) reaction mechanism was employed
in the computations in order to account for the chemistry. Radi-
ation calculations were carried out using a previously developed
radiation code. The numerical results obtained with and without
radiation were benchmarked against experimental and numer-
ical measurements available in the literature. On the basis of
numerical experimentation, it is concluded that:

• Despite the simplicity of the reaction mechanism employed
in the computations, steady state velocity, temperature and
major species concentration profiles obtained with and
without radiation are overall in good agreement with the
experimental data,

• Incorporation of radiation transport in the simulations has
significant effect on the velocity and temperature fields and
the agreement with the experimental data is better when
compared to the computations without radiation,

• Utilization of more than one corrector stage does not bring
any improvement in the accuracy and increases the compu-
tational effort significantly.

As a whole, the algorithm developed was proved to be an effi-
cient and accurate tool for the simulation of reacting radiating
flows and its extension to turbulent flows with the improvement
of the existing models is highly promising.
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